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THE NUMBER OF PRIMES En 1(-l)n-ii! IS FINITE 

MIODRAG ZIVKOVIC 

ABSTRACT. For a positive integer n let An+1 =En 1 (-1)n-li' !n = Zi2-1 i! 
and let pl = 3612703. The number of primes of the form An is finite, because 
if n > P1, then An is divisible by p1. The heuristic argument is given by 
which there exists a prime p such that p j !n for all large n; a computer check 
however shows that this prime has to be greater than 223. The conjecture that 
the numbers !n are squarefree is not true because 545032 1 !26541. 

Let N and P denote the set of positive integers and the set of prime numbers, 
respectively. For integers m, n let (i, n) denote their greatest common divisor, 
and let m mod n denote the remainder from division of m by n. The fact that m 
divides (does not divide) n is written as m ( n (m t n). For n > 2 let 

n 
An+1 = 1(-l) n-ii! 

i=1 

and let 
n-1 

!n= Ei! 
i=1 

(the left factorial function was defined by Kurepa [7]). Here we consider the fol- 
lowing three questions from [3]. Is it true that 

(1) ap := Ap modp 7 0 for allp E P? 

(This question is raised in connection with [3, Problem B43]: is it true that there 
are infinitely many prime numbers among An, n E N.) Is it true that 

(2) rP:=!pmodp#A0forallpcP, p>2? 

(This is from [3, Problem B44]; an equivalent of the Kurepa hypothesis [7].) And 
is it true that 

(3) for all n E N, n > 3, !n is squarefree? 

(This is also in [3, Problem B44]; the second Kurepa hypothesis [7], [9].) 
According to [3, Problem B44], R. Bond claims to have proved (2); but he in- 

formed this author that he later discovered an error in the proof. Wagstaff verified 
that (1) and (2) are true for n < 46340 and n < 50000, respectively. The calcula- 
tions were extended by Mijajlovic in [9] ((2) for p < 311009), Gogic in [2] ((1) and 
(2) for p < 1000000) and Malesevic in [8] ((2) for p < 3000000). Mijajlovic proved 
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in [9] that if n E N, p E P and 2 < p < 1223, then !n is not divisible by p2. A new 
overview of these questions is given in [4]. 

For k E N let N(k) = {0, 1, ... k - 1} and let Rk denote the random vari- 
able with the uniform probability distribution (PD) over the set N(k). The values 
n! mod p and n! mod p2, 1 < n < p, might be considered the independent real- 
izations of Rp and Rp2, respectively (a more precise model could exclude a few 
boundary values of n). Consequently, for arbitrary p E P we can think of ap and 
rp as the realizations of Rp. 

To check these assumptions, two types of chi-square statistical tests were carried 
out (for details see, for example, [6, Chapter 3]). The purpose of the first test was 
to check if given n = p - 1 integers z, E Np, 1 < i < p, might be considered 
independent realizations of Rp (the interesting cases for zi are i!, !(i + 1), and 
A,+l). The number k is appropriately chosen and the set Np is divided into k 
subsets (categories), so that zi belongs to the category [kzi/p] E Nk, 1 < i < p 
(here [x] denotes the integral part of the real number x). The frequencies 

fJ = {i, 1 <i<p [kzl/p] = j}, 0< j<k, 

and the expected values nr-j, 0 < j < k, can be computed, where 

-7r = Pr ([kRp/p] = j) = ([pi/k] - [p(i - 1)/k] + t,o - 8i,k-1)/p l/k. 

Here 6ij is the Kronecker symbol, equal to 1 (0) if i = j (i :& j). The frequencies 
are checked using the x2 statistics, 

k-i 

(4) X2 = (fj - n )2/((nj). 
i=O 

If the value of x2 is large, then we can say that this experiment contradicts the 
uniformity of zi, 1 < i < p. The values of x2 are calculated with p taking values 
from a set of random primes (the two first primes following the randomly chosen 
integer from (21,21+1), 10 < I < 23), and with z% equal to i!, !(i + 1), and Ai+,, 
1 < i < p, respectively. As expected, the results do not contradict the uniformity 
assumption. The results for the pairs of consecutive primes do look independent. 

The aim of the second type of test is to check the uniformity of the distribution 
of ap/p and rp/p (when p E P varies) between the subdivisions 

(5) [i/k, (i + 1)/k), O < i < k, 

of the unit interval, for some fixed k. Let zp denote ap or rp. Choose some integers 
a < b and a prime p E P(a, b) := {p E P I a < p < b}. For O < j < k compute the 
frequencies 

f {p E P(a, b) I [kzp/p] j} 

and the category probabilities 

-ry = Pr ([kRp/p] - j) l/k. 

Let n P(a, b)| be the cardinality of P(a, b). The PD of Rp/p over the equal 
intervals (5) is approximately uniform and independent of p. The values of x2 (4) 
are computed for zp = ap, rp, and (a, b) = (21, 21+1), 10 < I < 23 (10 < I < 22 when 
zp = ap). The results obtained do not contradict the supposed statistical model. 
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Using the assumptions about ap and rp, we see that (1) and (2) are related to 
the event 

R..= nf {Rp & O}. 
pEP 

But according to Mertens's theorem (see [10, Theorem 3.1] for example) 

rI (1--) I as x - o 
pGP(2,x) 

where -y is Euler's constant, so e-7 0.5615. Therefore, Pr(R,,) 0 O. More 
precisely, we have the following asymptotic relation 

Pr ( { Rp O as x ) 
pEP(x,xa ) 

This heuristic argument suggests that (1) and (2) are not true, and even more, 
that the number of counterexamples is infinite. The "probability" that there is a 
counterexample p E P(x, Xa) to (1) or (2) is approximately 1- 1/ae. With the same 
probability of 1/2, one counterexample to these claims might be expected in the 
intervals (23, 26] = (8, 64), (26, 212] = (64,2048] and (212, 224] = (2048,16793216]. 
The probability of finding counterexamples in (2 , 2n+1] is approximately 1/(mn + 1). 
The complexity of the search for a counterexample < x by the obvious algorithm 
is 0 (x2/ln x) [9], which makes it very difficult to check (1) or (2) if, for example, 
p> 224. 

The search for values p E P satisfying pI Ap was performed using a simple 
assembler routine for an Intel 80486 microcomputer (at 1OOMHz) calculating ap. 
After approximately 130 hours it was found that for p = P1 = 3612703 we have 
p Ap. This fact gives a solution of [3, Problem B43], because for all n > P1 

we have P1I An, and so An is not prime if n > P1. The numbers An are prime 
for n E {4,5,6,7,8,9,11,16,20,42,60,62,106,161}. Keller (see [3, Problem B43]) 
found the last five primes from the list and checked the primality of A, for n < 336. 
The necessary condition for primality 

(6) 3M-1 -1 (mod M), 

where M = An, is not satisfied if 336 < n < 563 (calculations are done using 
UBASIC [11]), and so the list of known primes An remains unchanged. By a 
heuristic argument it could be estimated that if n < P1, then An is prime with the 
"probability" 2/n (its prime factors are between n and A/n) and that the total 
number of primes An is approximately 2 Inp- 30. 

The similar search for values p E P satisfying p I !p, approximately 600 hours 
long, ended without success. No counterexamples were found to (2) for p < 223. 
The files containing all the residues ap, p E P(2, 222) and rp, p E P(2, 223), can be 
obtained from the author on request. An excerpt from the files is given in Table 1 
where the instances of ap and rp less than 10 or greater than p - 10 are listed. 
Here we see that the congruences !p _ 8 (mod p) and !p _-7 (mod p) have no 
solutions p < 223. This means that (!n - 8)/2 and !n + 7 are not divisible by 
any prime less than 223; as for An, it is not known whether the number of primes 
of those two forms is finite (of course, according to the probabilistic model, it is 
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TABLE 1. The values of ap, p < 222, and rp, p < 223, close to 0 or p 

p_ap p P|p-ap p[rp p IPp-rp 
2 1 2 1 2 0 
31 1 3 2 34 1 3 2 
53 4 5 1 594 5 1 
7 3 7 4 7 6 7 1 

1 14 1 1 7 1 11 1 3 3 
167 1 463 1 13 9 9 17 7 4 
31 9 1 9 9 3 12 263 2 
411 1 9 5 3 7 5 67 2 

439 5 23 5 41 4 70 1 3 
497 6 31 7 1 163 4 113 4 
6 7 5 7 1 7 197 9 139 5 
79 4 109 5 277 7 227 2 

157 6 131 3 373 2 349 6 
191 6 197 2 467 3 2437 5 
307 5 229 9 7717 7 4337 5 
641 3 367 4 11813 6 10331 2 
647 5 463 1 33703 9 77687 3 

1109 2 691 2 2275843 3 126323 8 
2741 3 983 3 3467171 5 274453 1 
3559 3 1439 2 4709681 9 

394249 1 11119 3 
2934901 1 16007 4 
3612703 0 22619 3 

32833 6 
_ _ _ _ _ _ _ 1 3 5 1 5 8 3 9 

1 
2 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

finite). The check shows that (6) is satisfied by M =(n- 8)/2, n < 563 if 

nm c {5,6,7,8,11,14,15,16,21,25,48,49, 70,108,111, 296*} 

and that (6) is satisfied by M = !n + 7, n < 563 if 

n E {3, 4,5, 7,10,12, 20,37, 52, 73,149,304*, 540*}. 

Primality of those numbers (excluding the ones with the corresponding n marked 
by an asterisk) is proved using UBASIC program APRT-CLE [1]. 

Let a be an arbitrary integer. Consider now divisibilities from [3, Problem B44], 
i.e. the prime powers pk (k > 1) dividing !n + a for all large n. For given p E P 
and k E N let 

m(p,k) = min{i E N Pk i!}j. 

The number m(p, k) is of course a multiple of p, and if k < 3, then m(p, k) = 

(k - 6p,2)P. For all n > m(p, k) we have 

!n- !m(p, k) (mod pk). 

Therefore, for all n > m(p, k) 

(7) pkl !n + a iff pkl !m(p, k) + a. 
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Especially, if p > 2 and k < 3, then for all n > kp 

(8) pk !!n[+a iff pk !(kp)[+ a. 

The case a = -1 is considered by Mijajlovic and Keller ([3, Problem B44]). 
Mijajlovic noted that 31 !n-1 for n > 3, 91 !n-1 for n > 6, and 11I !n-1 for 
n > 11 (by (8) this is the consequence of 3 1 !3 - 1, 32 !6 - 1 and 11 !11 - 1). 
Keller found no new divisibilities of !n - 1 for n < 106. From Table 1 it can be seen 
that 3 and 11 are the only primes p < 223 satisfying rp = 1, and therefore dividing 
!n- 1 for all large n. In Table 2 the factorizations of !n - 1, n < 42, (obtained 
using [5]) are given. The consequence of 112 t !(2 x 11) - 1 and 33 t !(3 x 3) - 1 is 
that 112 t !n - 1 for n > 22 and 33 t !n - 1, for n > 9. We conclude that pk = 32 
is the only repeated factor of !n - 1 for all large n if p < 223. 

The case a = 0 is somewhat simpler. Because rp 4 0 for all p E P(2, 223), there 
is not any p < 223 such that p I !n for all large n. The other cases -10 < a < 10 
might be considered similarly using Table 1. 

The other consequence of (7) is that if for the given prime power pk, k > 1, we 
are looking for all n E N such that pk I!n + a, then it is enough to check the values 
of n < m(p, k). Let 1 be the smallest integer satisfying pl t !m(p, 1) + a. If 1 < k, 
then it is enough to check if pk I!n + a for n < m(p, I) < m(p, k) (n < p if 1 = 1, 
which is most often the case). Otherwise, if 1 > k, then pk I!m(p, k) + a and so 
pk I !n + a for all n > m(p, k). Some repeated factors of !n - 1 may be seen from 
Table 2: 341 !8 1, 1121 !13 - 1, 1121 !21 - 1 and 372 !25 - 1. By (8) there are no 
other numbers !n - 1 divisible by 33 or 112, because 33 t !9 - 1 and 112 t !22 - 1. 
In Table 3 the triads (p, n, r) are listed satisfying r = !n mod p < 10, p E P(2, 220) 

and n < 2p, except those for which !n < p. We see that the only new solution 
of p2 1 !n- 1, p < 220, n E N, is 4161121 !26144- 1. From Table 1 we see that 
r41611 + 1 and consequently 41611 t !n - 1 for n > 41611. 

Table 3 contains a counterexample to (3): the relation 545032 !26541 shows that 
left factorials are not always squarefree. The existence of a counterexample also 
has a "probabilistic" explanation. Considering the values !n mod p2, 1 < n < p, 
as the independent realizations of Rp2, the check of !n mod p2 =8 0, 1 < n < p, for 
fixed p E P corresponds to the event Tp that p independent outcomes of Rp2 are 
all different from 0. Using the inequality 

I - < I1 - 1~2 )< 1 -2 ( 

which can be easily proved, we conclude that 

Pr(Tp) = (1 - 1/p2)P 1 - i/p 

for large p. It follows that (3) and (1) have the same asymptotic "counterexample 
densities". 

The seemingly unexpected repetitions in Table 3 can be explained as follows. The 
remainders !n mod p2, p < n < 2n, have the same remainder modp. Therefore, if 
!p mod p < 10 (hence this p appears in Table 1), then with the high "probability" 
of (1 - 1/p)P-1 e-I there will be exactly one such entry (p, n, r) in Table 3; 
furthermore, with the "probability" of (2P)1/p2( 

_ 1/p)p-2 0.5e-1 there will 
be two entries (p, n, r) and (p, n', r) with the same small remainder. Even the 
probability of three entries differing only in the second position is not too small, 



408 MIODRAG ZIVKOVIC 

TABLE 2. The factorizations of !n - 1, n < 42 

[J nr| The factorization of !n - 1 
3 3 
4 32 

5 3 x11 
6 32 x 17 
7 32 x 97 

8 34 x 73 
9 32 x 11 x 467 

10 32 x 131 x 347 
11 32 x 11 x 40787 
12 32 x 11 x 443987 
13 32x112x23x20879 
14 32 x 11 x 821 x 83047 
15 32 x 11 x 2789 x 340183 
16 32 x 11 x 107 x 509 x 259949 
17 32 x 11 x 225498914387 
18 32 x 11 x 163 x 20143 x 1162943 
19 32 x 11 x 19727 x 3471827581 
20 32 x 11 x 29 x 43 x 1621 x 641751001 
21 32 x 112 x 53 x 67 x 662348503367 
22 32 x 11 x 877 x 3203 x 41051 x 4699727 
23 32 x 11 x 11895484822660898387 
24 32 x 11 x 139 x 2129333 x 922459185301 
25 32 x 11 x 372 x 29131483 x 163992440081 
26 32 x 11 x 454823 x 519472957 x 690821017 
27 32 x 11 x 107 x 173 x 7823 x 12227 x 1281439 x 1867343 
28 32 x 11 x 431363 x 2882477797 x 91865833117 
29 32 x 11 x 191 x 47793258077 x 349882390108241 
30 32 x 11 x 37 x 283 x 5087 x 1736655143086866180331 
31 32 x 11 x 2771826449193354891007108898387 
32 32 x 11 x 1231547 x 306730217 x 227214279676815713 
33 32 x 11 x 41 x 163 x 224677 x 278437 x 6562698554476756561 
34 32 x 11 x 109 x 839 x 2819 x 40597679 x 8642572321688037037 
35 32 x 11 x 3072603482270933019578343003268898387 
36 32 x 11 x 7523968684626643 x 14280739323850758510209 
37 32 x 11 x 542410073 x 7125524357434108671946525659019 
38 32 x 11 x 379 x 2677 x 5685998930867 x 24769422762368668966567 
39 32 x 11 x 127 x 338944799 x 126050058872020979628982810240819 
40 32 x 11 x 956042657 x 221187999196843747210838711867563891 
41 32 x 11 x 8453033680104197032254976173172281742468898387 
42 32 x 11 x 1652359939 x 276306566079013 x 758627421394906687355741 

approximately e-1/6. Otherwise, if !p mod p > 10, then 

(!n mod p2) mod p =!p mod p > 10 for p < n < 2p, 

and therefore there cannot be an entry (p,*, ) in Table 3. 
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TABLE 3. The small values of !n mod p2 < 10, for p E P, p < 220, 
1 < n < 2p 

|| pJ_nuItnmodp2N[ n| !nmodp2 

2 3 0 83 60 5 
2 4 2 163 183 4 
3 4 1 163 273 4 
3 5 7 173 152 3 
3 6 1 197 355 9 
5 5 9 373 185 6 
5 6 4 373 514 2 
5 9 9 467 730 3 
7 6 7 467 902 3 

11 13 1 3119 306 6 
11 21 1 4357 837 7 
17 7 7 7717 9402 7 
17 11 6 7717 15415 7 
19 17 9 8297 4727 7 
19 20 9 33703 39795 9 
37 25 1 33703 43801 9 
37 63 5 33703 52337 9 
41 55 4 41611 26144 1 
43 9 9 54503 26541 0 
47 19 8 302837 283148 8 
59 41 9 351731 135646 8 
67 29 8 __ _ I I _ _ 
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